Gotero plano autocompensante autolimpiante con opciones PC, PCND y PCAS

El nuevo emisor plano autocompensante integrado en tuberías de riego multiestacionales **PRODRIP PC** desarrollado por **GESTIRIEGO**, es fabricado en varios espesores de pared, goteros de varios caudales y espaciamiento entre emisores de 20 a 250 cm, lo que permite a los agricultores adaptarse a las diferentes situaciones de las explotaciones.

Recomendado para el riego en terrenos topográficamente complicados, y donde se requieran largos laterales. Línea de pared delgada/media, de 0'90 y 1'00 mm, equipadas con un gotero autocompensado plano con amplio filtro de entrada, asegurando una buena protección frente a obturaciones. Elevada uniformidad de descarga entre emisores.

Compacto y eficiente. Gotero plano termosoldado con emisor Ultra-Slim, con la máxima superficie de filtración y máxima resistencia a la obstrucción.

Esta tubería cuenta con una garantía de 5 años.

CARACTERÍSTICAS/BENEFICIOS

- •Emisor autocompensante: compensación de presión (PC) para lograr una máxima precisión en topografías variables y laterales largos.
- •Laberinto de cascada que proporciona una fuerte turbulencia para evitar zonas de sedimentación de partículas, dando lugar a un emisor altamente resistente a obstrucciónes.
- •Diseño de gotero hidrodinámico que asegura un lavado continuo de sedimentos y pequeñas partículas de suciedad en la zona entre la membrana y el microcanal.
- *Excelente coeficiente de variación (CV) para una uniformidad máxima.
- •Exponente de descarga (x) de 0'0.
- *Diafragma de silicona alta calidad.
- *Disponible en rollos regulares o en bobinas de cartón.
- Durable bajo arduas condiciones de campo y resistente a aplicaciones de agroquímicos.

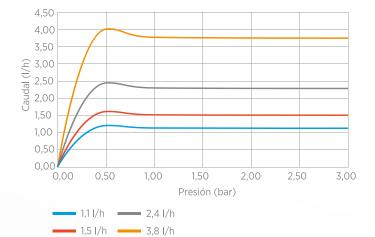
			PRODRIP PC					
DIÁMETRO	ESPESOR	CAUDAL	PRESIÓN	SEPARACIÓN ENTRE SEMISORES				
mm								
	0'9 1'0	1′1	0/0					
16		1′5		0'20 0'25 0'30 0'33 0'40 0'50 0'60				
16		2'4	2'0	0'75 1'00 1'25 1'50 2'00				
		3'8						

ESPECIFICACIONES

- Versiones del gotero PC ND (sistema autocompensante y antidrenante que reduce el tiempo de llenado del lateral y facilita el riego por pulsos) y PD AS (diseño con compensación de presión y antisucción que evita la succión en la etapa de drenaje. Adecuado para evitar la obstrucción que generan las pequeñas partículas de suciedad), especialmente indicado para instalaciones de riego subterráneo.
- La presión de apertura del gotero es de 0'3 0'5 bar.
- La presión de cierre del gotero es de 0'2 0'3 bar.
- Espesor de pared 0'9 y 1'0mm.
- Caudales: 1'1, 1'5, 2'4, 3'8 L/h.

APLICACIONES

- Para riego de cultivos intensivos.
- Para explotaciones con cultivos arbóreos y hortícolas.
- Para riego en invernadero. Idóneo la versión ND.
- Para zonas verdes y jardinería.


DATOS TÉCNICOS

ESPESORES DE PARED								
DIÁMETRO NOMINAL	METRO DIÁMETRO INTERIOR ESPESOR DE PARED PRESIÓN NOMINAL PRESIÓN MÁXIMA DE TRABAJO							
mm								
16	13'8	0'90	2'00	3'00				
10	13'8	1'00	2'00	3'50				

PRODRIP PC							
DIÁMETRO NOMINAL	CAUDAL	HOMOGENEIDAD	EXPONENTE DE DESCARGA*				
mm	l/h	%					
	1′1	3'6	0'00				
16	1′5	3'6	0'00				
10	2'4	3'6	0'00				
	3'8	3'7	0'00				

TABLA CAUDAL-PRESIÓN									
					PRESIÓN				
DIÁMETRO	CAUDAL	0'00	0′5	1′0	1'5	2'0	2′5	3'0	
					mm				
					CAUDAL				
mm	mm				l/h				
	1′1	0'00	1′10	1′08	1′12	1′16	1′09	1'07	
4.0	1′5	0'00	1′52	1'49	1'49	1′51	1,50	1′48	
16	2'4	0'00	2'28	2'22	2'29	2'36	2'39	2'35	
	3'8	0'00	3'80	3'67	3'69	3'74	3'89	3'90	

						PR	ODRIP P	C						
DIÁM	DIÁM. CAUDAL		LONGITUDES DE RAMALES MÁXIMAS EN TERRENO LLANO											
DIAM.	flow / débit	PRESIÓN pressure	0,20	0,25	0,30	0,33	0,40	0,50	0,60	0,75	1,00	1,25	1,50	2,00
(Ø)	(l/h)	(Bar)						(n	n)					
		1,50	105	126	146	157	183	217	248	292	360	420	477	604
	11	2,00	123	149	172	186	217	256	293	346	425	198	565	715
	1,1	2,50	139	166	193	205	242	286	328	386	476	558	632	800
		3,00	150	180	210	226	163	312	357	421	518	606	688	872
		1,50	87	105	121	131	152	180	207	243	300	350	398	503
	1,5	2,00	103	124	144	155	180	213	244	288	354	415	470	596
		2,50	115	139	161	171	202	239	274	322	397	465	527	667
10		3,00	125	150	175	188	219	260	298	351	432	505	573	727
16		1,50	66	80	91	99	114	137	156	184	226	265	300	373
	2.4	2,00	78	94	109	116	136	161	184	217	268	313	355	442
	2,4	2,50	87	105	121	131	151	180	207	243	300	350	399	498
		3,00	94	113	132	142	165	196	225	265	326	382	434	541
	7.0	1,50	48	57	66	71	82	98	113	133	162	190	215	269
		2,00	55	67	78	83	97	115	133	156	192	226	256	320
	3,8	2,50	62	75	86	93	109	130	148	175	215	252	287	359
		3,00	68	81	94	102	118	141	161	190	234	275	311	389

ECUACIÓN CARACTERÍSTICA							
DIÁMETRO diameter / diamètre	q=k·p ^x						
(mm)	(l/h)	q (l/h) , p (bar)					
	1,1	$q = 1,08 \cdot p^{0,03}$					
16	1,5	$q = 1,51 \cdot p^{0,02}$					
10	2,4	$q = 2,39 \cdot p^{0,03}$					
	3,8	$q = 3,75 \cdot p^{0,01}$					

ACCESORIOS RECOMENDADOS

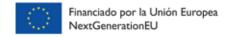
TE SEGURIDAD MARRÓN

TOMA SEGURIDAD MARRÓN

TOMA SEGURIDAD MARRÓN CON JUNTA

ENLACE SEGURIDAD MARRÓN

CODO SEGURIDAD MARRÓN


VÁLVULA RAMAL

"Soluciones eficientes para sistemas de riego"

info@gestiriego.com (+34) 968 658 326 Paraje Vistabella s/n 30892 Librilla, Murcia. ESPAÑA

